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We present the main features of a code in the formulae manipulating language 
REDUCE for the evaluation of Bethe-Salpeter kernels for NN scattering. Our starting 
point is a recent work of J. J. Kubis, who gave an algorithm for the partial wave analysis 
of spinor BetheSalpeter equations in terms of the helicity formalism. Applications 
of these kernels apart from the evaluation of the Bethe-Salpeter equations include, for 
example, “matrix”-Pade approximants for partial waves. 

1. INTRODUCTION 

The Bethe-Salpeter equation for nucleon-nucleon scattering with single particle 
exchange has been considered in recent years by several authors [I, 21. Although 
the equation has no solutions for physical coupling constants, it has served as a 
test for Padt approximants in Ref. 2. These authors found qualitative agreement 
in the analytic behaviour of the Pad6 solution as a function of the coupling constant 
and the exact solution as stated by Mandelstam [3]. 

Taking into account higher order irreducible Feynman graphs as kernels in 
the Bethe-Salpeter equation may lead to less singular integral equations with 
solutions for physical coupling constants. An even more challenging goal is, 
however, the calculation of Pad6 approximants from the perturbation series of NN 
scattering, taking into account all the graphs in each order. The work of Ref. 2 
seems to encourage this direction. In that case the technique of the Bethe- 
Salpeter equation, especially the iteration procedure, seems to be the only adequate 
way of calculating Feynman graphs with a unitarity cut. Other procedures [4] 
have proved to be comparatively poor. 

The Bethe-Salpeter equation for NN scattering consists of a set of eight coupled 
integral equations for total angular momentum J > 0 (four for J = 0). This is 
due to the possible couplings between states of positive and negative energies 
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(in the following denoted as “p-spin” states) and up and down spins. The positive 
energy elements of the “spin matrices” of the kernel, taken on shell, give the partial 
wave amplitudes of the corresponding graph. Apart from being kernels in the Bethe- 
Salpeter integral equation, there is a further application of these matrices. It is 
generally believed [5] that calculating “matrix’‘-Pad6 approximants with the whole 
spin matrices (on shell) yields more convergent results than ordinary Pade’s, as the 
whole matrix contains much more information than just the physical element. 

The calculation of higher order Feynman graphs as kernels in the Bethe-Salpeter 
equation, however, is a tedious affair in view of the Dirac algebra involved. As 
the number of y-matrices grows with higher order graphs, their sandwiching 
between Dirac spinors seems to become almost impossible in a hand calculation. 
In a recent work [6] J. J. Kubis has developed an algorithm to perform the 
partial wave analysis for spinor Bethe-Salpeter equations. It has as yet been applied 
to single particle exchange only, but it is applicable to the calculation of kernels 
from higher order irreducible Feynman graphs as well. Furthermore, this algorithm 
proves to be adequate for an evaluation of the Bethe-Salpeter kernels on the 
computer. It is the purpose of this paper to give explicit expressions for the spinors 
and matrix elements involved and to present the main features of a computer code 
for these calculations in the formulae manipulating language REDUCE, developed 
by A. C. Hearn [7]. We omit all symmetry properties introduced in Ref. 6, as many 
of them depend on the particular interaction used. 

An outline of the paper is as follows: Section 2 contains a brief account of the 
Bethe-Salpeter equation. In Section 3 we give explicit expressions for the Dirac 
particle spinors for the initial and final states, following Appendix A of Ref. 6. 
In Section 4 we list the helicity transition amplitudes involved in the algebra. 
The p-spin analysis of Section 5 gives a survey of all single particle matrix elements 
to be evaluated. The actual calculation in the code is finally done by simple matrix 
multiplication. Section 6 contains a description of the code. 

2. THE BETHE-SALPETER EQUATION FOR NIV SCATTERING 

The BetheSalpeter equation is shown graphically in Fig. 1. Our kinematics are 
the same as in Ref. 6: 

Pl = (E-tPo,P)t Pl’ = (E + Pal, P’), 

P2 = @ -Ppo, -PI, ~2' = @ -PO', -PI 

ql = (E + qo > s>, E2 = s/4. 

q2 = (E - qo > --Q)- 
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FIG. 1. Graphical representation of the Bethe-Salpeter equation. 

The equation can be written symbolically as [2, 61 

which is an operator equation for rj, G denoting the interaction and S the two- 
nucleon propagator. The conversion into an equation for partial wave amplitudes 
is done by sandwiching between Dirac particle states. Following Ref. 6, we write: 

I$ = $44 and G = $G1/I, 

where 16 is meant to be a two-particle Dirac wave function of given momentum, 
p-spin and helicity. The two-nucleon propagator is dependent on p-spin only and 
is given in great detail in Ref. 6. We assume that G can be written in the general form 

(1) 

where Vl’) and Vi’) are vertex operators for particle 1 and 2, respectively. The 
operator 0 contains the coupling constants and the propagators of the exchanged 
particles. In general it also stands for an integration over Feynman parameters. 

It is our goal to set up a REDUCE code for the explicit evaluation of 
the expression in curly brackets of formula (1). 

3. EXPLICIT FORM OF THE DIRAC PARTICLE SPINORS 

We write the Dirac spinors as in Appendix A of Ref. 6: 

and 

%(d = N, 

-2qA 
dd = N, E, + M X-A 7 [ 1 1 

(2) 

(3) 
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where h indicates the helicity (h = &l/2), 

E, = (q2 + M2)l12 and N, = ((E, + 1l4)/2E#~. 

These differ from the usual u’s and a’s [8] by the factor (M/Ep)1/2. Positive and 
negative energies for the initial and final states are indicated in what follows by 
using large latters U and W, respectively, for their spinors. Following Ref. 6 we 
then have for the initial states: 

and 
~&I) = u-A,(-d 

W&) = h,(4). 

The final states contain the rotated spinors 

Using 

and 

we finally obtain: 

G,(P) 

xde> = expt-iu,W) xA . 

exp(--ia,8/2) = cos(e/2) - ia, sin(8/2) 

-iuZxh = (-1)1/2-$-h , 

= c0s(e/2) uAl(p) + (-1)1/2-Al sin(8/2) U-J-P), = (4) 

U,,(p) = cos(O/2) 2+(-p) + (-1)1’2+ha sin(O/2) 24,(p) (5) 

for positive energies and 

w,,(p) = c0w) Q(-P) + (-P+ WW> Q,(P), 

w,,(p) = cos(e/2) u&) + (- l)1’2+Ae sin(8/2) 0-J-p) 

(6) 

(7) 

for negative energies. 
The spinors for initial and final states are thus expressed in terms of the basic 

spinors (2) and (3). 

4. TRANSITION HELICITY AMPLITUDES 

According to Ref. 6, Appendix B, we have to calculate the transition helicity 
amplitudes (h1’A2’ ] 4 ] h,h,), w h ere h stands for the initial and X for the final 
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helicity and # = Y(l) V2) is now the product of the vertex operators for particle 1 
and 2, respectively (see Eq. (1)). 

We have 

O,‘h,’ I 4 I G2) = 01’ I Y(l) I ~d0, I V2) I A,), 

and according to Eq. (B.l) of Ref. 6, the sandwiching has to be performed for the 
following set of helicities: 

Y’2) / -), 

V2) I +>, 

V2’ I +>, 
Y(2) 1 +>. 

We observe that the knowledge of the following single particle matrix elements 
gives us a complete knowledge of I& ,..., &, : 

F,“’ = (+ I Y(l) I +), F,“’ = (+ 1 Y(l) I -), F,“’ = (- I V’(l) 1 +> 

for particle 1, and 

F,‘2’ = (+ 1 yt2) 

F3(2) = (- I v(2) 

for particle 2. 

I +>, F,‘2’ = (+ 1 v12) 

1 +), Fq(2) = (- j I’(‘) 

->, 

-> 

The asymmetry of these elements with respect to particle 1 and 2 (the extra 
appearance of the (-, -)-element for particle 2) is due to the implicit use of 
conservation laws on the partial wave amplitudes, which reduces the number ,of 
matrix elements that we have to compute. 

5. &~PIN ANALYSIS 

Omitting helicity indices and using the notation of large letters U and W for 
positive and negative energy states, we have the following basic states in p-spin 
spaceC2): 

1 +> = lyl)U(2), 

1 -) = W'l'jy'2' 3 

1 e) = (U'l'Jp + W'l'U'2')/1/2 , 

1 0) = (U'l'W'2' - W’1’U’2’)/2/2. 
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We have to calculate the following matrix elements: 

(+, +> = ~icl)p'~'l, . ~ce)ycz)~'z' = p . JT5, 

<+, -) = jp'ycl)@m . p3) ~cz) ~(3) = p . p, 

(-, +) = W(Uj7"'U'l' . ~(2)~C2)u“J' = F3 . F7, 

(-, -) = jj7(1)~(1)~'1' . ~WJ7CZ)W'2' = F4 . FE. 

These contain already all the necessary single particle matrix elements. All other 
elements are simply different combinations of the P,..., F*: 

(+,e) =(P.F6+F2*F5)/& 

( f, o) = (r;l . F= - F” . F5)/1/2, 

<-,e> =(F3.FafF4*F7)/2/2, 

(-, o) = (F3 . Fa - F4 . F’)/& 

(e, +) = (F1 . F7 + F3 . F5)/@, 

(e, -) = (F2 . Fa + F4 . F6)/d/Z, 

(0, +) = (P - F7 - F3 . F5)/& 

(0, -) = (F2 . Fa - F4 . F’?/l/z. 

(e,e> =(F1*Fa+F3~F6+F2~F7+F4~F5)/2, 

(e, o) = (F1 * Fa + F3 * F6 - F2 . F7 - F4 ’ F3/2, 

<o,e> =(F1*Fa-F3*F6+F2*F7-F4*F5)/2, 

<o, o) = (F1 * Fa - P * F6 - F2 * F7 + F4 . F5)/2. 

Combining the helicity and p-spin analysis shows which single particle matrix 
elements are to be evaluated. Labelling helicity indices by lower indices (see Sec. 4) 
and p-spin indices by upper indices (l-4 for particle 1 and 5-8 for particle 2, see 
above), we have 

Fp i = I,..., 3; k = l,..., 4 

for particle 1, and 

Fik i = I,..., 4; k = 5,..., 8 

for particle 2, 

which amounts to 28 single particle matrix elements, products of which give us all 
the desired I#~ ,..., $8 . 
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Finally we have to form the amplitudesA (i = I,..., 8) (B. 15) of Ref. 6, which are 
free of kinematic singularities: 

fi = 41 - $2 3 
f2 = 41 + $2 9 
f3 = ~[~dcos2UW1 - ~v4/sin2WWZ 
f4 = {[4&os2W)1 + [Msin2W2>1>/2~ 
fs = (4, - hJ/sin 6 
fs = (+, + 9Wsin 6 
h = -6 - hJ/sin 8, 
fa = -(4, + &)/sin 0. 

These give us the starting point for the partial wave projection [6], which is in 
general very much dependent on the specific interaction kernel. 

6. DESCRIPTION OF THE CODE 

It cannot be the purpose of this work to present a code which would do the 
calculations for all possible kernels. We would have to write separate codes for the 
Bethe-Salpeter kernels for singlet states (L = J), triplet states (L = J) and coupled 
triplet states (L = J & 1) [6]. All of these would be fairly lengthy, particularly for 
total angular momentum J > 0, and would involve-apart from some basic 
features-almost the same algebraic manipulations. Instead we will give the 
representation of the y-matrices and spinors and of the following 16 matrix 
elements : 

F,“(i = 1, 2; k = I,..., 8) 

in REDUCE. The representation of the spinors is complete and nothing has to be 
added in further calculations. The above matrix elements are sufficient for the 
calculation of the Bethe-Salpeter kernel for J = 0 states. 

Figure 2 shows the representation of the y-matrices and spinors in REDUCE. 
EI stands for the unit matrix and KO,..., K3 and K5 for the y-matrices y. ,..., ys 
and y6 . U and V stand for spinors of positive and negative energies. The spinors 
for the initial states are given by (2) and (3) and have to be set up for all possible 
combinations of helicity (A = f1/2) and sign of momentum (&I). These latter 
ones are indicated by P and M for plus and minus, respectively, where the first 
letter refers to the helicity and the second to the momentum. Thus UPM, e.g., 
stands for UAB--1,2(q) = u+,12(-q). 

The basic spinors for the final states are U&) = un+(p) * yO. In the notation of 
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COMMENT GAMMA MATRICES; 
EI:=MAT((1,0,0, 0),(0,1,0, 0),( 0, 0, 1,0),( 0,0,0, 1)); 
W:=MAT((l,b,P, 0),(0,1,0, 0),( 0, 0,-1,0),( 0,0,0,-l)); 
Kl:=MT((0,0,0, 1),(0,0,1, bl,( 03-1, 0,0),(-1,0,0, 0)); 
K2:=MAT((0,0,0,-1),(0,0,1, P),( 0, I, 0,0),(-1,0,0, 0)); 
K3:=mT((0,0,1, 0),(0,0,0,-1),(-l, 0, 0,0),( 0,1,0, 0)); 
K5:=mT((b,b,l, 0),(0,0,0, I),( 1, 0, 0,0),( 0,1,0, 0)); 
COMMENT SPINORS FOR INITIAL STATES; 
WP :=MT((l),(B),( EQR),(0)); 
UPM :=MAT((~),(~),(-EQR),O); 
uMP :=MAT((~),(~),(~),(-EQR)); 
UMM :=mT((lb),(l),(B),( EQR)); 
VPP :=MAT((0),(-EQR),(0),(1)); 
VPM :=MT((P)),( EQR),(bl,(l)); 
VMP :=MT(( EQR),(0),(1),(0)); 
VMM :=MAT((-EQR),(~),(~),(~)); 
COMMENT BASIC SPINORS FOR FINAL YATES; 
UPPB:=MAT((l,fl, EPR,fl))*Kfl; 
UPMB:=MAT((l,fl,-EPR,@))*Kfl; 
UMPB:=MAT((fl,l,fl,-EPR))*KP); 
UMMB:=MAT((@,l,fJ, EPR))*Kfl; 
vppa:=MAT((b,-EPR,~,I))*K~; 
VPMB:=MAT(@, EPR,P),l))*u; 
VMPB:=MAT(( EPR,fJ,lJ))*K@; 
VMMB:=MAT((-EPR,fl,l,fl))*Kf~; 
COMMENT COMPLETE SPINORS FOR FINAL STATES; 
UPBl:=X*UPPB+Y*UMMB; 
UMBl:=X*UMPB-Y*UPMB; 
UPBP:=X*UMMB-Y*UPPB; 
UMB2:=X*UPMB+Y*UMPB; 
WPBl:=X*VMMB+Y*VPPB; 
WMBl:=X*VPMB-Y*VMPB; 
WPB2:=X*VPPB-Y*VMMB; 
WMBP:=X*VMPB+Y*VPMB; 
COMMENT SUBSTITUTIONS; 
EQR :=Q/EQM; 
EPR :=P/EPM; 
NF :=EPM*EQM/2; 
END; 

FIG. 2. Explicit representation of spinors and y-matrices in REDUCE. 

the code they differ from the spinors for the initial states by an additional index B. 
The complete set of final ‘spinors (4)-(7) is eventually given by UPB, ,..., WPB, ,... 
(for positive and negative energies), where P and A4 stand for the helicity and the 
indices 1 and 2 refer to particle 1 and 2. x and y stand for cos(8/2) and sin(8/2). 

In addition we have used the following notation: P and Q for the momenta p 
and q, EPM and E&M for E, + M and Eg + M, NF for a normalization factor. 

Figure 3 shows the evaluation of the above 16 matrix elements. Fik in the code 
stands for Fik and Vl and V2 represent the vertex operators Y(l) and Vz) of Eq. (1). 
The summation over i in Eq. (1) will in general be performed in a DO loop. 
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Figure 3 shows that once the matrices are set we can just multiply them by calling 
their names and need not make the summation over row- and column- indices 
explicitly. 

Fll:=TJPBl*Vl*UPP; 
F12:=UPBl*Vl*VMM; 
F13:=WPBl*Vl*UPP; 
F14:=WPBl*Vl*VMM; 
F15:=UPB2*V2*UMki; 
FlG:=UPB2*V2*VPP; 
F17:=WPB2*V2*UMM; 
F18:=WPB2*V2*VPP; 
F21:=UPBl*Vl*UMP; 
F22:=UPBl*Vl*VPM; 
F23:=WPBl*Vl*UMP; 
F24:=WPBl*Vl*VPM; 
F25:=UPB2*V2*UPM; 
F26:=UPB2*V2*VMP; 
F27:=WPB2*V2*UPM; 
F28:=WPB2*V2*VMP; 

FIG. 3. Calculation of single particle matrix elements, VI and V, representing the vertex 
operators of Eq. (1). 

To show our normalization (which is the same as in Ref. 2), we give the cal- 
culation of the (1, I)-element for the singlet L = J = 0 state: 

PHI := NF* F11 t F15; 

PH2 := NF+F21 * F25; 

KERNEL& 1) : = PHl - PH2; 

Finally, the following substitutions proved to be useful: 

LETX*X=(l+C)/2,Y*Y=(l-C)/2,X*y=S/2,S*S=l-CCC; 

LET P*P = EPM*(EPM--2*A4), Q*Q = EQMc(EQM-2*M); 

FOR ALL X LET Xt(- l/2) = Xf(1/2)/X; 

where S and C stand for sin ~9 and cos 8, respectively. Xf(-l/2) means X-l12. The 
last command is used in order to combine factors of 2/2 and 2 properly. 

To exemplify the application of our code, we write down the crossed box graph 
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of Fig. 4 in terms of a Feynman integral. Having performed the Chisholm algebra 
[9] it reads: 

G - f dx, . . . dx4 1 [jj,f - #l) . p”‘][J,f - #2) . jJ’2’] s.-$ + ; y3,“‘2’ +I, 

E+q p,+k E+P 
I 5 

p3+ii f&+k 

,x 
\ 

1’ 1 
\ 

E-q P2+k E--p 

FIG. 4. Kinematics for the crossed box graph. 

Here the four vectors P) are given by 

Ptk) = pk - i &pi 
i-l 

and 

A = i xi(pi2 - UJ - i X~X*P~ . pj , 
i=l i,i-1 

where ui means the square mass of particle i. 
Our vertex operators are in this case 

and 

yw = M _ y'l' . pw, V(2) = J,f - Y’2’ . P(2); 

VP) = yp, J,p = #(2) (i = O,..., 3). 

The vertex operators in the second term are actually the same as in the vector 
exchange. In Fig. 5 we present the output of our code for this latter case. We have 
performed the calculation for the complete box graph both by hand and computer 
and found that the results agree, which is an excellent check for both the hand 
calculation and our code. For higher order graphs, however, the hand calculation 
will become impossible. 
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KERNEL(l,l) := 2*(2*EP*EK - M2) 
n 

KERNEL(1,P) := 2*(2*EP*EK + ML) 

(l/2) 
KERNEL(1,3) := 2*M*Q*2 

KERNEL(1,4) := fJ 

KERNEL(2,l) := 2*(2*EP*EK + M2) 

KERNEL(2,2) := 2*(2*EP*EK - M2) 

(l/2) 
KERNEL(2,S) := - 2*M*Q*2 

KERNEL(2,4) : p, 

(l/2) 
KERNEL(3,l) := 2*P*M*2 

(l/2) 
KERNEL(3,2) := - 2*P*M*2 

KERNEL(3,3) := - 4*P*Q 

KERNEL(3,4) := b 

KERNEL(4,l) := fl 

KERNEL(4,2) := b 

KERNEL(4,3) := b 

KERNEL(4,4) := 4*EP*EK*C 

FIG. 5. output for Jqll = #‘, Vj2’ = y”(e) (vector exchange), where the indices 1, 2, 3 and 4 
of the KERNEL stand for 1.SO+, ?!&-, sPo8 and sPoo. respectively (see also Ref. 2). 

7. CONCLUSION 

The use of REDUCE for the analytic evaluation of Bethe-Salpeter kernels for 
NN scattering makes possible the evaluation of complicated higher order Feynman 
diagrams and makes it possible to set up higher order “matrix’‘-Pad6 approximants 
for partial waves. A hand calculation-apart from consuming much time-would 
hardly guarantee the correctness of the results. Thus our work presents a technical 
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step forward to the calculation of higher order Pad6 approximants in a field theory 
of strong interactions. 
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